

1D MEMS Scanning Mirror A150-F2K-1D 2D Hybrid Scanning Mirror A150-F2K-2D Customized Scanning Mirror

Features

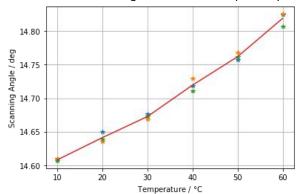
- Large optical aperture (150 mm²)
- Highly durable, high shock-resistance (1500 G)
- Built-in angle sensing with external read-out circuit

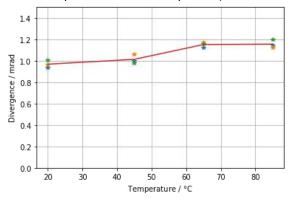
Applications

- Automotive LiDAR
- Custimized aperture for further applications in E-Vehicle/ARVR/HUD etc.

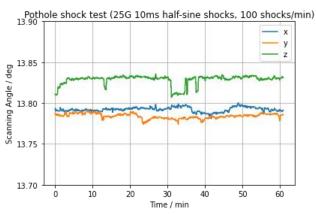
Outline

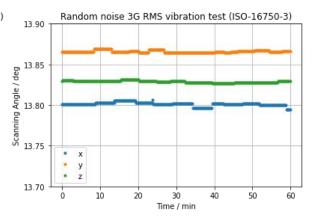
The 1D MEMS scanning mirror A150-F2K-1D, with a die size of 18mm x 9mm, is packed inside a standard LCC ceramic package, and sealed under an optical glass window with anti-reflection coating (wavelength customizable). The 2D hybrid scanning mirror A150-F2K-2D is composed of the 1D mirror A150-F2K-1D mounted on an electromagnetic scanner which can follow arbitrary control waveform.


Specification


Parameter	Condition	Value		Unit			
		Min.	Тур.	Max.			
1D MEMS scanning mirror							
Optical aperture	Aperture can be custimized (<2000mm ²)	150 mm ²		mm ²			
Optical scanning angle	Angle can be custimized (<±20°)	_	±12.5	±15	۰		
Optical divergence	The reflected beam divergence, assuming	_	1	2	mrad		
	collimated beam incident on the entire						
	aperture						
Operation frequency	Resonance scanning	1900	2000	2100	Hz		
Power consumption	±7.5° optical scanning angle	0.6	0.75	0.9	mW		
Driving voltage	Sinusoidal wave, peak-to-peak voltage,	65	70	75	V		
	±7.5° optical scanning angle						
Driving current	±7.5° optical scanning angle	340	350	380	μΑ		
Mechanical Q-factor		55	60	65	_		
Angle detection noise	Optical angle, RMS noise	_	0.001	_	۰		
Angle detection accuracy	Temperature oscillation 10 – 60 °C	_	0.02	0.05	۰		
Mirror reflectivity	Wavelength 905 nm ~ 1550 nm	96	97.5	_	%		
G-Shock resistance	Half sine wave, 0.5 ms, 3 axis, 3 shocks	1500	_	_	G		
	each (AEC-Q100 automotive standard)				(9.8 m/s ²)		
2D hybrid scanning mirror, slow-axis							
Optical scanning angle	Can be custimized (<±90°)	_	±30	±60	۰		
Angle detection accuracy	Using Hall-effect angle sensor, can be	_	0.024	_	۰		
	improved						
Angle control accuracy	Scanning 60° optical angle, and following	_	0.05	_	۰		
	5Hz triangular control waveform						
Power consumption	Averaged over time	_	1.3	_	W		
Max. driving voltage		_	12	_	V		
Max. driving current	Stall current at max. driving voltage	_	2.2	_	Α		

Temperature Stability Test


• 1D MEMS scanning mirror driven in open-loop mode (i.e. drift compensable in close-loop mode)



Vibration/Pothole Stability Test

- 1D MEMS scanning mirror driven in open-loop mode (i.e. drift compensable in close-loop mode)
- Pothole shock profile: 25G 10ms half-sine wave (GMW3172)
- Vibration profile: Random 3G RMS (ISO-16750-3)

Customized Scanning Mirror

The scanning mirror can be made according to customers' specification. A non-recurring engineering (NRE) fee will be charged. The customizable parameters are listed below.

Parameter	Customization Range	Risk	Potential Challenges
Aperture size	5~1000 mm ²	None (5~150 mm ²) Low (150~500 mm ²) Mid (500~1000 mm ²)	Cost increases with apertureDifficult to find off-the-shelf packages for large apertures
Aperture shape	Rectangle, customizable aspect ratio	None	• None
Maximum scanning angle	0~30° optical	None (0~20°) Low (20°~30°)	Beam divergence scales linearly with scanning angle
Operation frequency	500 ~ 15kHz	None (1.6k~7kHz) Low (1k~1.6kHz, 7k~15kHz) Mid (500~1kHz)	 High operation frequency (>7kHz) may require increased driving voltage Low operation frequency (<1.6kHz) reduces the device durability (e.g., the device may fail shock tests)